
S ystems
Optimization AD-A223 802
Laboratory

Preconditioners for Indefinite Systems
Arising in Optimization

by
Philip E.* Gill, Walter Murray,

Dulce B. Ponceledn and Michael A. Saunders

TECHNICAL REPORT SQL 90-8

June 1990

\DTR.~iCz I1Z tT

Approvod rjLZ'es

Department of operations Research
Stanford University
Stanford, CA 94305

90 06 29 067

SYSTEMS OPTIMIZATION LABORATORY AOeession For
DEPARTMENT OF OPERATIONS RESEARCH I S G.A&I

STANFORD UNIVERSITY DTIC TAB

STANFORD, CALIFORNIA 94305-4022 UnanzncLuced

Preconditioners for Indefinite Systems
Arising in Optimization

by

Philip E. Gill, Walter Murray,
Dulce B. Poncelein and Michael A. Saunders

TECHNICAL REPORT SOL 90-8

June 1990

Research and reproduction of this report were partially supported by the National Science Founda-
tion Grant DDM-8715153 and the Office of Naval Research Grant N00014-90-J-1242.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those

of the authors and do NOT necessarily reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the United States Government.
This document has been approved for public release and sale; its distribution is unlimited.

PRECONDITIONERS FOR INDEFINITE SYSTEMS
ARISING IN OPTIMIZATION

Philip E. GILL* Walter MURRAYt

Dulce B. PONCELEONI and Michael A. SAUNDERSt

Technical Report SOL 90-81
June 1990

Abstract

We discuss the solution of sparse linear equations Ky - z, where is
symmetric and indefinite. Since exact solutions are not always reqired, d rect
and iterative methods are both of interest. ,

An important direct method is the Bundh-Parlrtt factorizaon K = U DU,
where U is triangular and D is block-diagcal. A sparse impfementation exists
in the form of the Harwell code MA27. An appropriate iterative method is the
conjugate-gradient-like algorithm SYMMLQ, which sI(ves indefinite systems
with the aid of a positive-definite preconditioner.

For any indefinite matrix K, we show that the UTDU factorization can be
modified at nominal cost to provide an "exact" preconditioner for SYMMLQ.
We give code for overwriting the block-diagonal matrix D produced by MA27.

We then study the KKT systems arising in barrier methods for linear and -
nonlinear programming, and derive preconditioners for use with SYMMLQ- -

For nonlinear programs we suggest a preconditioner based on the "smaller" -

KKT system associated with variables that are not near a bound. For linear
programs we propose several preconditioners based on a square nonsingular
matrix B that is analogous to the basis matrix in the simplex method. The

*,-.aim is o facilitate solution of full KKT systems rather than equations of the
form AD A fT = r when the latter become excessively ill-conditioned. f ,,,)

Keywords: indefinite systems, $reconditioners, linear programming, non-
linear programming, numerical optimization, barrier methods, interior-point
methods.

*Department of Mathematics, University of California at San Diego, La Jolla, CA 92093, USA.
tSystems Optimization Laboratory, Department of Operations Research, Stanford University,

Stanford, CA 94305-4022, USA.
lComputer Science Department, Stanford University, Stanford, CA 94305-2140, USA.
lPresented at the Second Asilomar Workshop on Progress in Mathematical Programming, Febru-

ary 1990. The material contained in this report is based upon research supported by the National
Science Foundation Grant DDM-8715153 and the Office of Naval Research Grant NC 1014-90-J-1242.

2 Preconditioners for Indefinite Systems

1. Introduction

Symmetric indefinite systems of linear equations arise in many areas of scientific
computation. We will discuss the solution of sparse indefinite systems Ky = z by
direct and iterative means.

The direct method we have in mind is the Bunch-Parlett factorization K =
UTDU, where U is triangular and D is block-diagonal with blocks of dimension 1
or 2 that may be indefinite. Such a factorization exists for any symmetric matrix K
[BP711. (We shall refer to it as the Bunch-Parlett factorization, while noting that
the Bunch-Kaufman pivoting strategy is preferred in practice [BK77]. The principal
sparse implementation to date is due to Duff and Reid [DR82,DR83] in the Harwell
code MA27. See also [DGRST89I.)

The iterative method to be discussed is the Paige-Saunders algorithm SYMMLQ
[PS75]. This is a conjugate-gradient-like method for indefinite systems that can
make use of a positive-definite preconditioner.

1.1. Preconditioning indefinite systems

One of our aims is to present a new and simple result that shows how to use the
Bunch-Parlett factorization of an indefinite matrix to construct an exact precondi-
tioner for an iterative method such as SYMMLQ. The intended use is as follows.

Given an indefinite system Ky = z and a related indefinite matrix K, we expect
that the Bunch-Parlett factorization/i(= UTDU will be computed (or will already
be available). We show that D can be changed cheaply to provide a positive-definite
matrix M = UTDU, such that SYMMLQ (with preconditioner M) will solve /'y = z
in at most two iterations. Hence, M should be a good preconditioner for the original
system involving K.

1.2. Optimization

As a source of indefinite systems, we are interested in barrier methods or interior-
point methods for solving linear and nonlinear programs in the following standard
form:

minimize cTX~(1.1)
subject to Az = b, I < < u,

where A E Rmxn, and

minimize F(X)
X(1.2)

subject to c(Z) = O, 1 < X < u,

where F(z) and c(z) have continuous first and second derivatives. We assume that
an optimal solution (x*, w*) exists, where e is a set of Lagrange multipliers for the
constraints Ax = b or c(z) = 0.

1. Introduction

1.3. KKT systems

When barrier or interior-point methods are applied to these optimization problems,
the Karush-Kuhn-Tucker optimality conditions lead to a set of equations of the form

(H AT) AX) (--) K H AT (1.3)
A) -A- r A

whose solution usually dominates the total computation. The vectors Ax and Ar
are used to update the estimates of x* and w*.

For quadratic programs or general nonlinear programs, H is typically a general
sparse matrix like A, and it is natural to solve the KKT system as it stands. The
Harwell code MA27 has been used in this context by several authors, including Gill et
al. [GMSTW86] and Turner [Tur87,Tur9O] for sparse linear programs, by Poncele6n
[Pon90] for sparse linear and quadratic programs, and by Burchett [Bur88] for some
large nonlinear programs arising in the electric power industry.

1.4. Avoiding AD 2AT

If H is known to be nonsingular, it is common practice to use it as a block pivot
and solve (1.3) according to the range-space equations of optimization:

AH-ATA7r = AH- g + r, HAx = ATAwr - g.

For linear programs this is particularly attractive, since H is then a positive diagonal
matrix. For example, in a typical primal barrier method, H = pD- 2 where D is
diagonal and u is the barrier parameter (u > 0) [GMSTW86]. The range-space
equations reduce to

AD 2ATA~r = AD 2g + pr, Ax = 1D2(ATA7r - g), (1.4)

and most of the work lies in solving the system involving AD 2A7 . When r = 0, the
numerical properties may be improved by noting that the equation for Ar reduces
to the least-squares problem

m IIDg - DATArI 2. (1.5)
Ar

However, it is important to observe that the range-space equations mayj not give a
stable method for solving the KKT system if H is ill-conditioned.

1.5. Example

Let

A=(1 1), H (1)-- , Z --"

A H V I1i

4 Preconditioners for Indefinite Systems

where p 1, and consider the KKT system (1.3). This would arise when a primal
barrier method is applied to a 3x4 LP problem (1.1) having I = 0, u = oc, when x is
the current estimate of x* and 1 is the current barrier parameter. Thus H = AD - 2 ,

where D = diag(xi).
The condition numbers of interest are cond(K) ;t: 6 (independent of p) and

cond(AH-IAT) = cond(AD2AT) 0.5/p. 1 The latter becomes increasingly large
as a solution is approached (p -, 0), even though K and the original linear program
are very well-conditioned.

Similar examples are easily constructed. (Indeed, K can be well-conditioned
even if H is singular.) Thus, we advocate direct or iterative solution of the full
KKT system (1.3) even for linear programs, rather than (1.4) or (1.5) according to
current practice.

Gay [Gay89, pp. 16-17] has already drawn attention to the lurking numerical
difficulties and suggests a middle ground of working with AD 2AT as long as possible,
then switching to a more robust alternative such as direct solves with K.

1.6. Iterative methods and preconditioning

The KKT systems we are concerned with arise when Newton's method is applied
to the nonlinear equations defining optimality conditions for barrier subproblems;
see Section 3. In this context, there are not many KKT systems to be solved
(compared to those in active-set methods), the systems need not be solved exactly
(Dembo, Eisenstat and Steihaug [DES82]), and the KKT matrix eventually does
not change significantly. It is therefore appropriate to consider iterative methods
and preconditioners for the indefinite matrix K.

Previous work on preconditioning for interior-point methods has focussed on the
LP case and the Schur-complement matrix AD2Ar Most approaches have used
approximate Cholesky factors of AD 2AT for example, [GMSTW86,Kar87,KR88,
Meh89a]. Exact LU factors of DAT have also been investigated [GMS89].

The success of preconditioned conjugate-gradient methods in this context lends
added promise to our proposed use of the much better-conditioned KKT systems,
now that it is known how to precondition indefinite systems.

1.7. Summary

In Section 2 we consider general indefinite systems and derive a preconditioner
from the Bunch-Parlett factorization. In Section 3 we consider barrier methods for
nonlinear programs, and propose factorizing just part of the KKT system to obtain
a preconditioner for the whole system.

Sections 4-6 deal with the LP case. In Section 4 we propose three preconditioners
based on LU factors of a square nonsingular matrix B (analogous to the basis in
the simplex method). Section 5 discusses some practical difficulties. Section 6 gives
numerical results on the condition numbers of K and AD 2AT in a typical sequence
of barrier subproblems, and compares the preconditioned systems C-KC- T for
several preconditioners CCT.

'We use the spectral condition number, cond(K) = IIK-'11211KI12 .

2. Preconditioning Indefinite Systems 5

2. Preconditioning Indefinite Systems

Let K be any symmetric nonsingular matrix, and let M be a given positive-definite
matrix. Also, let "products with K" mean matrix-vector products of the form
u = Kv, and "solves with M" mean solution of linear systems of the form Mx = y.

The Paige-Saunders algorithm as implemented in SYMMLQ [PS75] may be used
to solve Ky = z even if K is indefinite. As with other conjugate-gradient-like
algorithms, the matrix is represented by a procedure for computing products with
K (those generated by the symmetric Lanczos process).

The first steps towards accelerating the conve-gence of this algorithm were taken
by Szyld and Widlund [SW78]. Given a positive-definite matrix M as precondi-
tioner, their algorithm used solves with M in the normal way, but was unconven-
tional in also requiring products with M.

Subsequently, a variant of SYMMLQ was developed that requires only solves with
M [Sau79]. To solve Ky = z, this variant regards the preconditioner as having the
form M = CCT and implicitly applies the Paige-Saunders algorithm to the systemr.

C-KC-Tw = C-'z,

accumulating approximations to the solution y = C-Tw (without approximating w,
which isn't needed). An implementation is available from the misc chapter of netlib
[DG851.

2.1. Use of the Bunch-Parlett factorization

Given any symmetric nonsingular matrix K, there exists a factorization of the form

K = PTUTDUP,

where P is a permutation, U is upper triangular, and D is block-diagonal with
blocks of dimension 1 or 2 [BP71]. If K is indefinite, some of the blocks of D will
have negative eigenvalues. Let the eigensystem of D be

D = QAQT, A = diag(Ai),

and let D = QAQT, A = diag(Aij),

be a closely related positive-definite matrix that can be obtained at minimal cost.
If we define C = pTUTf12, it is easily verified that

K =_ C-1KC -T = diag(Aj/lAjl) = diag(=l).

This means that the "perfect" preconditioner for K is the matrix

M = CCT= pTUTi)uP,

since the "preconditioned" matrix R has at most two distinct eigenvalues and the
Paige-Saunders algorithm converges in at most two iterations.

In practice, M will be computed from the Bunch-Parlett factorization of an
approximation to K.

6 Preconditioners for Indefinite Systems

2.2. Modification of D from MA27

The block-diagonal matrix D is packed in the MA27 data structure as a sequence of
matrices of the form

() and ()
In the 1 x 1 case, we do nothing if a > 0; otherwise we reverse its sign. In the 2 x 2
case, we do nothing if ay > 02; otherwise we compute the eigensystem in the form

(a 03 (\)1iA &)# - S c) 1\2 s -c

where c2 + s2 = 1. We then form the positive-definite matrix

and overwrite the appropriate three locations of MA27's storage.
The techniques for computing the 2 x 2 eigensystem are central to Jacobi's

method for the symmetric eigenvalue problem. They were developed by Rutishauser
[Rut66]. We have followed the description in Golub and Van Loan [GV89, p. 446],
with minor changes to work with symmetric plane rotations.

A subroutine for modifying the D computed by MA27 is given in the Appendix.

2.3. Aasen's method

In general, Aasen's tridiagonalization method (Aas7l] is considered competitive with
the Bunch-Kaufman approach [BK771 for solving dense indefinite systems. Aasen's
method computes a factorization of the form K = UTTU where T is tridiagonal.

We do not know of a sparse implementation, but in any event we note that it
would not be ideal for producing a preconditioner in the manner described above,
since the eigensystem for T would involve far more work than for the block-diagonal
D of the Bunch-Parlett factorization.

On the other hand, we could compute a (very special) Bunch-Parlett factoriza-
tion of T and modify the associated D as described above.

3. Barrier Subproblems 7

3. Barrier Subproblems

We return now to the optimization problems (1.1)-(1.2). In barrier methods, the
bounds 1 < x < u are absorbed into the objective function and we solve a sequence
of perturbed subproblems, typically of the form

Pt

minimize F,(x) = F(x) - /4"(ln(zj - 1i) + ln(uj - xj)) (3.1)
X ~j=1(31

subject to c(x) = 0,

where the barrier parameter y takes decreasing positive values that are eventually
very small. If lj = -o or uj oo for some j, the corresponding terms ln(xj - 1j)
or ln(uj - xj) are omitted. If xj has no bounds, both terms may be omitted.

The following quantities are needed:

L,,(x, T) = F,(x) - 7rTc(x) the Lagrangian function,

g,,(x) = VF.(x) the gradient of the barrier function,

gL(x, T) = g,(z) - A(x)Twr the gradient of the Lagrangian,

HL(x, r) - V2F,(x) - 7rV 2c,(X) the Hessian of the Lagrangian, and

A(x) = Vc(x) the Jacobian of the constraints.

For convenience we assume that A(x) E Rn, has full row rank m, and that the
scaling of the problem is reasonable, so that IIA(x)II z 1.

3.1. Newton's method and the KKT system

The optimality conditions for (3.1) are the nonlinear equations

gL(X,Tr) = 0, (3.2)

c(z) = 0. (3.3)

Newton's method may be applied directly, or to some equivalent system. Given
suitable initial values for the primal and dual variables (x, 7r), the key set of equations
for generating a search direction is the KKT system

HL AT (3.4)

where the KKT matrix and right-hand side are evaluated at the current point (X, 7).
A positive steplength a is then chosen to reduce some measure of the size of the
right-hand side (gL,c), and the variables are updated according to z #-- x + crAx,
S- r + aATr. (Sometimes a different a may be used for x and 7r.)

8 Preconditioners for Indefinite Systems

3.2. A preconditioner for K

In general, some of the variables converge to values near their upper or lower bounds.
For such variables xj, the Hessian HL includes on its diagonal a term that becomes
very large: is/(xj - li)2 or k/(uj - x,) 2 , which are O(1/p). Let the KKT matrix be
partitioned accordingly:

K = (K 1
3 KT (3.5)

K3 1K2

where K, is the part of HL associated with variables near a bound, and K 2 looks like
a smaller KKT system associated with the remaining variables. This partitioning
is crucial to the sensitivity analysis in [Pon90]. Of course, the partition depends
on the measure of closeness to a bound, but it is not critical here except that the
dimension of 1 should not exceed n - m.

One possible approximation to K is

(D1)2(3.6)

where D1 is a diagonal matrix containing the diagonals of K1 , which by construction
are large and positive. Applying the method of Section 2, we can now obtain a
positive-definite preconditioner for K as follows:

K2 = UTD2 u 2 , M = (D 1 uTD)2 U 2) (3.7)

where D 2 is obtained from D2 at nominal cost.

3.3. Discussion

In broad terms, we need to estimate which variables are going to be "free" (away
from their bounds) at a solution. If m , n, the KKT system K 2 associated with
the free variables may be much smaller than the whole of K, and the cost of the
Bunch-Palett factorization of K 2 may be acceptably low.

For the early iterations of Newton's method, the estimate of K 2 will usually be
poor, and the diagonal term D1 will not be particularly large. However, following the
inexact-Newton approach [DES82], only approximate solutions to the KKT system
are needed, and the iterative solver need not perform many iterations.

As the Newton iterations converge and the partition (3.5) becomes more sharply
defined, the preconditioner should become increasingly powerful and produce the
increasingly accurate solutions required at an acceptable cost.

4. Preconditiones for Linear Programming 9

4. Preconditioners for Linear Programming

For linear programs the structure of the partitioned KKT system (3.5) can be inves-
tigated more closely, given that optimal solutions are often associated with a vertex
of the feasible region. We partition the constraint matrix into the form A = (N B),
where B is square and nonsingular, and N in some sense corresponds to the n - m
variables that are closest to a bound.

The Hessian for the barrier function is a diagonal matrix H, which we partition
as H = diag(HN,HB). The KKT system is then

K= HB B T •

N B

As convergence occurs, the diagonals of HN --, o (and in general cond(K) -- cc).
In degenerate cases, some diagonals of H8 may also become very large.

In various primal, dual and primal-dual interior-point algorithms for LP, sim-
ilar matrices K arise with varying definitions of H (e.g., [Meg86,KMY88,LMS89,
Meh89a,Meh9O]). The discussion hereafter applies to all such methods.

In the following sections we introduce a series -f preconditioners of the form
M = CCT. To improve the convergence of SYMMLQ, the transformed matrices K =
C-IKC - T should have a better condition than K or a more favorable distribution
of eigenvalues (clustered near ±1). We make use of the quantities

V = B-THjB - 1, W = NH; 11 2 ,

and are motivated by the fact that V - 0 and W - 0 in nondegenerate cases. The
effects of degeneracy are discussed later.

4.1. The preconditioner M,

The first preconditioner is diagonal and is intended to eliminate the large diagonals
of K:

MI = CIC T = H 1 (4.1)

I
I WT

H8CC T 11 BT (4.2)

W B

With diagonal preconditioning, there is no loss of precision in recovering solutions
for the original system. Thus as HN becomes large, the preconditioned matrix K,°
tends to represent the true sensitivity of the KKT system with regard to solving
linear equations.

We will use IC, later for comparing condition numbers

10 Preconditioners for Indefinite Systems

4.2. The preconditioner M 2

The second preconditioner is block diagonal:

M 2 = CCT= BTB , (4.3)

I IW

K 2 = C;KCT= V 1) (4.4)
W I

Since V and W tend to become small, M 2 tends towards being an exact precon-
ditioner for K. We see that a Bunch-Parlett factorization is no longer needed. In
order to solve systems involving M2 , we may use any sparse factorization of B or
BT.

4.3. The preconditioner Al3

The third preconditioner is designed to eliminate the submatrix V in (4.4), for
degenerate cases where V is not adequately small:

M 3 =C 3 C T , C 3 = B T 1 HBB - 1 , (4.5)

2)

k 3 = C lKC T = -VW 1 (4.6)

W I

The off-diagonal term in (4.5) can be derived by observing that for a KKT matrix
of the form

K=:-(H) B square,B

we would like M = CCT to satisfy

C-IKCT= I J

or equivalently, CJCT= K. Letting C be of the form

C(B T E)
I

we find that E should satisfy EB + BTET = H. The simplest choice is then to set
£ =2HB-'.

Though V has been eliminated, we have now introduced the term -jVW, and
solves with M3 cost twice as much as solves with M2. The expected benefit is that
2VW should be smaller than V itself.

4. Preconditioners for Linear Programming 11

4.4. The preconditioner M 4

The fourth preconditioner also eliminates V, using the factorization BT = LU, where

we intend that L be well-conditioned:

M 4 = C 4CT, C 4 = L 14HBL (4.7)
UT

-T 2

K 4 = C 4 1KC4 - I . (4.8)

where
= L-1BLT, T v = U-TNH; 1/ 2 .

As before, letting C be of the form

C=(L ')

and requiring CJCT = K, we find that ELT+ LET= H, and we take E =IHL- T.
Solves with M 4 are cheaper than with A1 3. Comparing (4.6) and (4.8), a further

advantage is that VWV = UVW tends to be smaller than VW, although W = U-TW
is probably larger than W.

4.5. The preconditioner M

We mention one further diagonal preconditioner that has appeared implicitly in the
literature for the case H = PD - 2 with D diagonal. It does not depend on the N-B
partitioning, and gives a transformed system that does not involve p:

MD = CDC?=D 2 I) (4.9)

KD = cg'KC-~ - (A'D DA T (4.10)

The matrix RD" is associated with weighted least-squares problems of the form (1.5),
as discussed in [GMSTW86]. Turner [Tur87,Tur9O] has investigated the use of MA27
to obtain exact factors of both K and A D. An important practical observation was
that MA27 produced much sparser factors for RD than for K.

Unfortunately, the numerical examples in Section 6 show that K 0 has essentially
the same condition as AD 2ATr which tends to be much more ill-conditioned than
K, (4.2) . We therefore cannot recommend the use of ND.

For the sake of both direct and iterative methods for solving KKT systems, it is
hoped that further development of MA27 will result in greatly improved sparsity in
the factors of K and/or R 1. At the time of writing, a new code MA47 holds much
promise (see Duff et al. [DGRST89]).

12 Preconditioners for Indefinite Systems

4.6. Regularizing K and AD 2AT

Since A often does not have full row rank, it is important to include a regularization
parameter 6 > 0 in the KKT system. Thus (1.3) becomes

H A T A

Systems of this type have been studied in the context of sequential quadratic pro-
graxmming by Murray (Mur69], Biggs [Big751 and Gould [Gou86].

In practice, a wide range of values of 6 may be used without inhibiting conver-
gence, particularly with methods that do not maintain primal feasibility (AAx = 0).
For example, we would recommend values in the range 10- 8 < 6 < 10- 4 on a ma-
chine with about 16 digits of precision, assuming 1hAII : 1.

Note that the corresponding system (1.4) becomes

(AD 2AT+ 1 6/5l)Ar = AD 2g + pr. (4.12)

When y is as small as 10-10 (say), one would have to choose rather a large 6 (say
6 > 10-2) to achieve any degree of regularization of AD2AT. This constitutes a large
perturbation to the underlying KKT system (4.11).

In other words, a much smaller 6 is sufficient to regularize (4.11) than (4.12).
Thus, KKT systems again show an advantage over AD 2A.

With regard to the preconditioners, b introduces terms -61, -6H, -/U-TU - '

into the bottom corner of K 2°, Ai3 , R4 respectively. For IK4 it appears that 6 must
be chosen quite small and that the choice of B must be flexible enough to prevent
U from being excessively ill-conditioned (see Section 5.3).

13

5. Use of LU Factors

For linear programs, the "small" KKT matrix in (3.5) is of the form

K2 = B BT

As in the general nonlinear case we could obtain a preconditioner from a Bunch-
Parlett factorization of K 2, and in practice this may prove to be a good approach.

The preconditioners M2 , M3 and M4 were derived on the assumption that it
should be cheaper to compute sparse factors of just the matrix B. We propose to
use the package LUSOL [GMSW87] to obtain BT = LU, where L is a permuted
lower triangle with unit diagonals. A user-defined tolerance limits the size of the
off-diagonals of L (typically to 5, 10 or 100), thereby limiting the condition of L as
required.

5.1. Choice of B

One of the main practical difficulties will be in choosing a "good" square matrix B at
each stage. The current values of x and/or the estimated reduced costs z = c - ATir
should provide some guidance. For example, the diagonal matrix H is defined in
terms of these quantities, and the smallest m + s diagonals of H could be used to
pinpoint a submatrix A of A (for some moderate s > 0). LUSOL could then be used
to obtain a rectangular factorization AT=- LU. The first m pivot rows and columns
may suggest a suitable B.

Alternative approaches to choosing B have been suggested by Gay [Gay89], Tapia
and Zhang [TZ89], Mehrotra [Meh89b] and others. These remain to be explored.

5.2. The effects of degeneracy on V and W

In general, primal degeneracy will mean that certain elements of H9 do not tend to
zero, so that not all of V or V will become small. Similarly, dual degeneracy will
mean that certain elements of HN will not become large, and not all of W or W will
become small.

The main effect is that the preconditioners will be less "exact". Either form of
degeneracy is likely to increase the number of SYMMLQ iterations required.

5.3. Singular systems

Whatever the method for choosing a square B, it is probable that B will be singular
(since in many practical cases, A does not have full row rank). At present we propose
to rely on the fact that LUSOL will compute a stable singular factorization of the
form

14 Preconditioners for Indefinite Systems

and the solve procedures will treat this as if it were the factorization of a nonsingular
matrix

User-defined tolerances determine how ill-conditioned U, is allowed to be (and hence
determine its dimension).

Alternatively, we may use the factorization BT = L1 U1 to transform most of K
as already described. Certain rows of A will not be transformed in the preferred way,
and again the effect will be to increase the number of SYMMLQ iterations required.

6. Numerical Examples for the LP Case

Here we investigate the effect of the preconditioners described in Section 4. For test
purposes we have used MATLAB [MLB87] to implement a primal-dual interior-
point algorithm for the standard LP problem min cTx subject to Ax = b, x > 0.
The linear system to be solved each iteration is

(H AT) AX))A -bI A~r r '

where H = X-Z, X = diag(xi), Z = diag(z), r = b - Az, g = c - ATr - pX-'e,
and e is the vector of ones. The search direction for z is Az = X-(pe - ZAx) - z.

The rows and columns of A were scaled to give JhAl z 1. The starting values
were x = e, z = e, 7r = 0 (so that H = I initially), and 6 was fixed at 10- 8, with the
machine precision on a DEC VAX system being around 16 digits. The parameter p
was reduced every iteration according to the steplengths for x and z: I / - A,
where a. = min(ar, rz,0.99) and a.,, a, were limited in the usual way to be at
most 1 or 0.99 times the step to the boundaries x > 0, z > 0 respectively. See
[KMY88,MMS89,LMS89,Meh90] for related details.

Condition numbers of various matrices were obtained using MATLAB's function
rcond. The square matrices B for the preconditioners of Section 4 were obtained
from the columns of A for which Hi < 20. The diagonals fji were first sorted and
up to 1.2m of the smallest were used to select a rectangular matrix A from A. In
practice, a sparse LU factorization of A or AT would extract a full-rank submatrix,
but here we used MATLAB's function qr(A) to elicit a full-rank set of columns (via a
QR factorization with column interchanges), and a second QR factorization of part
of AT to pinpoint a full-rank set of rows. The dimension of the resulting matrix B is
generally less than m. The "rank" was determined from the first QR factorization
by requiring the diagonals of R to be greater than 10' .

6.1. A nondegenerate example

To illustrate ideal behavior of the preconditioners, we chose a nondegenerate problem
expl [Bla82 in which A is 10 by 17 (including 10 unit columns associated with slack
variables). The lack of primal or dual degeneracy means that near a solution, m = 10

6. Numerical Examples for the LP Case 15

diagonals of H are substantially less than 1 and n - m = 7 diagonals are significantly
greater than 1. The choice of B is ultimately clear-cut.

Table 1 lists various condition numbers for each iteration of the primal-dual
algorithm. For interest we include AD 2 AT and /?,, which were defined in terms
of D = X = diag(xi) (see Section 4.5) and incorporated the same regularization 6
(Section 4.6). It may be seen that both AD 2AT+pz6I and 1k become increasingly ill-
conditioned in step with K, in contrast to the "meaningful" condition of K reflected
by K1 (in which the large diagonals of H have been scaled to 1).

The preconditioned systems K 2 , K3 and K 4 show an increasing though appar-
ently mild improvement over RV Their effectiveness depends on the choice of B
and whether or not it has dimension m. The column labeled "B rank-def" records
the corresponding rank deficiency. The conditions of B, L and U were less than 25,
7 and 40 respectively for all iterations.

Low conditions are always a good sign, but high ones tell an incomplete story.
Figure 1 shows more clearly the increasing improvement of the preconditioners M2,
M3, M4 in terms of the clustering of the eigenvalues of 'k2, k 3, k 4 around ±1.
The KKT systems have dimension m + n = 27. Eigenvalues in the range (-5,5) are
plotted exactly; the remainder are compressed into the ranges (-6,-5) and (5,6).
Thus, K 2 has one or two eigenvalues greater than 5 for the first eight iterations,
whereas 1("3 has its eigenvalues inside (-5,5) at all times. (The vertical axis is
"iteration number" shifted by 1 for fIC2, 14 for I13, and 27 for 1k4. Each horizontal
line gives the spectrum of one of these matrices at the corresponding iteration.)

It is evident from Figure 1 that 1'3 and 11 4 have more favorable eigenvalue
distributions than flK2, and that fl 4 is marginally better than/K3 , the main benefit
being that it is more cheaply obtained. There is a striking absence of eigenvalues in
the range (-1 +/3, -/) for some small /, though we have no immediate explanation.
This range broadens to (-1 + /3, 1 - /3) for all systems at the final iteration, as we
may expect.

6.2. A more typical example

Table 2 and Figure 2 give similar results for the well known problem afiro [Gay85].
The matrix A is 27 by 51, including 19 slack columns. We see that AD 2AT + ISJ
and KD again become extremely ill-conditioned in step with K.

The KKT systems have dimension 78. As before there is a clear division between
large and small diagonals of H near a solution, but in this case only m - 5 are
substantially smaller than one. The rank of the corresponding columns of A is
m - 7, consistent with B's final rank deficiency of 7. The conditions of B, L and U
were again low: less than 35, 13 and 34 respectively.

It is encouraging to observe that Figure 2 is qualitatively similar to Figure 1
in spite of the rank deficiency in B. The main difference is two eigenvalues close
to zero on the last iteration, in keeping with the difference between m - 5 and
m - 7. Similarly for the second to last iteration. We can expect a low number of
SYMMLQ iterations will be required as the barrier algorithm converges, as in the
ideal nondegenerate case.

16 Preconditioners for Indefinite Systems

k p AD 2AT lKD K k k 2 1(3 1(4 B rank-def

1 1.9e-2 1.2el .lel .1el .lel 3.1el 2.6el 1.1el
2 4.5e-3 6.5el 3.1el 6.8e2 1.9el 5.5el 2.7el 2.7el
3 4.8e-4 1.2e3 2.2e3 4.4e4 6.9el 4.6e2 5.7el 1.6el
4 1.3e-4 1.7e5 3.1e5 1.0e6 4.2e3 4.4e3 1.5e3 1.6e3 2
5 3.2e-5 2.9e5 5.3e5 1.3e6 7.7e2 2.3e3 5.4e2 5.6e2 1
6 1.5e-5 4.0e5 5.8e5 3.1e5 6.3e2 2.8e3 7.4e2 7.5e2 1
7 4.6e-6 4.0e5 5.8e5 1.6e5 1.2e2 3.0e2 1.1e2 1.1e2 1
8 1.6e-6 4.7e5 6.3e5 3.0e5 3.9ei 1.4e2 1.9el 8.4e0
9 1.4e-7 9.1e5 1.1e6 4.9e5 2.Oel 4.7e0 1.3eO 1.5eO

10 7.8e-9 8.4e5 1.0e6 3.5e6 1.7el 1.JeO 1.1eO 1.3e0

Table 1: Condition numbers for problem expi

40

K 4 *4*-
C4+35 + 4* + +4.- + +

+. 4++ + +.4.411+ +

+4+4+. +. 4.4.4 + 4.4.

30- + +" ..+30+ + + ++*I+ + +
+ +4- 4"4 + ++ 4.+

25
K3 +

+ 40" + + - +

4. + 4.+ 4w44 + 4+
++ * 4 4W+ + +

20 + + + +4 4.

4. 4. 4. -

10- ik2 + +
+" " + +" 9 41" +

4. -4 - 4.4..40 4 4. 4
4. 4. 4 4 " 4. 14-44" 4. 4.

+ .4+ 4++ + * 4+ + 4.

15 4.-. *4. 4-- *- 4-.

+4o. ++ ** ++ +

105 4- + 41.+ + + +
+ 4.4--4 4+. 4. 4+ +

-6 -4 -2 0 2 4 6

Figure 1: Eigenvalues for K2', K3', K 4 for problem expl

5 .44..4 44 44.m4 44.4

6. Numerical Examples for the LP Case 17

k u AD 2AT I(, K K, K2 K3 K 4 B rank-def
1 2.6e-2 6.Oel 2.2el 3.3el 2.3el 1.3e2 1.8e2 9.8el 1
2 9.9e-3 3.1e2 2.0e2 1.8e3 1.2e2 7.0e2 1.1e2 4.4el 1
3 1.8e-3 2.5e3 3.6e3 3.0e4 4.7e2 9.4e3 3.1e3 4.9e2 1
4 5.4e-4 1.7e4 3.4e4 1.1e6 2.2e3 4.1e4 1.1e4 7.0e3 1
5 2.9e-4 8.2e3 1.7e4 3.0e5 6.9e2 2.4e4 1.2e3 3.1e2 3
6 3.3e-5 8.5e3 1.8e4 4.5e4 1.0e2 1.1e3 4.6e2 2.9e2
7 2.4e-5 2.0e4 3.9e4 1.4e6 3.8e2 3.0e3 6.5e2 4.8e2 1
8 8.5e-6 2.6e5 4.3e5 1.8e7 9.0e3 1.6e4 2.5e3 2.9e3 3
9 3.1e-6 1.7e7 2.7e7 1.1e8 7.8e4 5.3e3 2.5e3 2.2e3 6

10 4.3e-7 2.0e8 3.1e8 2.0e9 1.7e6 9.6e4 2.3e4 1.6e4 6
11 4.3e-9 2.elO 4.elO 4.ell 5.7e8 3.7e5 3.9e5 2.6e5 7

Table 2: Condition numbers for problem afiro

40 " I I
+ + 4-.

K4-#+ + 4- *-*+ +35- 4 + 40. + +H vi W ++,-4*+- + + +
+A+4 + 4I- a444 a!4 ! 4.-1=4.+ + + + +

+ 4 + +. 4.444-46 4.4.44-4uI*6+ 4.4 + + +
+ + * + .44.46. 4* * * +""+4+-+* + + + +
+ + + +4. 4..444 410I440. + + + + +

30- + + +-+4+ W 4.4430441.* +0*W ++ 4

25- + 40. +44

3 4. *4 4. *P -3444- 4.4.

+0. +++.-4 *+.4,H-* .+ +44.

K3 + + + ++ +4+#W.. *+. + + +

+ + 4. 4.0444* +*44H4'44144-- ** + 4 . 4.

20 . 4. 414.444W 4* -4**4W444 4.+ 4 + + ++#+ U + +++a*++ + . 4. +

25+ + W4W**++ + ++

+. + + * 44 .4+-4 + + + +

153- ++ +"++ . .++4 +0 + + +

+++ . s + + + + +

4 .4 ++ +** +
+ .+ + 4" * 4 + + + 4.

10- K 2 :+++++g 4IW 4.+
* H -l + *4-4- 444.'+4* 4 . +

+ ++1*44 4*++g *~+- 4.-+ 4-i + + + + 4 *

+ +0 + *M + **+++++o- + + + + + +

5- + +*+ + 4++ + ++4+*0+4+ + + + 4 #+

* + 4+4+ +UA##" 4. 4 4. + 4 4
-++ .4. 44. + . +.*4 . .* 4 *44. + 4.

-+ t.,lt -l + +

0 . ,I H-

-6 -4 -2 0 2 4 6

Figure 2: Eigenvalues for Kt2, I'3, I 4 for problem afiro

18 Preconditioners for Indefinite Systems

7. Conclusions

For symmetric indefinite systems of linear equations, we have shown that the Bunch-
Parlett factorization can be used to provide a preconditioner for the Paige-Saunders
algorithm SYMMLQ (Section 2). This general result led us to consider iterative
methods for the KKT systems arising in barrier methods for QP and nonlinear
programming. The preconditioner (3.7) should play an important role in future
interior-point implementations for large-scale constrained optimization.

For linear programs, the sensitivity analysis associated with the partitioned KKT
system (3.5) led us to consider the true sensitivity of K, as reflected by the pre-
conditioner M1 and the transformed system A'1 (4.1)-(4.2). In turn, the fact that
cond(kI1) is typically much smaller than cond(AD 2AT) motivated development of
the preconditioners M 2 , M3 , M 4 (4.3), (4.5), (4.7).

Subject to effective methods for choosing B, we expect these KKT precondition-
ers to bring improved reliability to interior-point LP algorithms. Implementations
based on direct or iterative solves with AD 2AT are often remarkably effective, but the
extreme ill-conditioning of the ADFAT systems as solutions are approached makes
their use tantamount to walking the razor's edge.

A switch to the full KKT system should be beneficial as Gay [Gay89] sug-
gests, particularly when A contains some relatively dense columns that prevent
exact Cholesky factorization of AD2AT. Fortunately, since B becomes more sharply
defined near a solution, the KKT preconditioners will become most effective when
they are most needed.

Acknowledgements

We wish to thank Dr. Ed Klotz of Ketron Management Science, Inc. for making the
test problem expl available to us.

A. A preconditioner from the Bunch-Parlett factorzation 19

A. A preconditioner from the Bunch-Parlett factorization

The following Fortran 77 routine illustrates the construction of a positive-definite
matrix M = UTDU from the Bunch-Parlett factorization A = UTDU produced by
the Harwell MA27 package of Duff and Reid [DR82,DR83].

Subroutine syprec overwrites the representation of D in the MA27 data struc-
ture. A typical application would contain calls of the form

call ma27ad(n, nz, ...)
call ma27bd(n, nz, ...)
call syprec(n, la, ...)

to factorize A and compute D, followed by multiple calls of the form

call ma27cd(n, a ...)

to solve systems involving M.

subroutine syprec(n, la, liv, a, iv, negi, neg2)

implicit double precision (a-h, o-z)
double precision a(la)
integer*2 iw(liw)
integer negl, neg2

* syprec (SYmmetric PREConditioner) takes the factors

* A=U'DU
* from Duff and Reid's Harwell subroutine MA27BD and changes the

* block-diagonal matrix D to be a positive-definite matrix Dbar with

* the same 1x1 and 2x2 block-diagonal structure.

* The eigensystem D = Q E Q' is used to define Dbar = Q lEt Q',

* where 1E1 contains the absolute values of the eigenvalues of D.

* The matrix

* Abar = U' Dbar U
* is then an exact preconditioner for A, in the sense that SYMMLQ

* would take only 2 iterations to solve Ax = b (or 1 iteration if

* D = Dbar is already positive definite).

* If the original matrix A is close to some other matrix K.

* Abar should be a good preconditioner for solving K x b.

* Note that MA27 stores the elements of D(inverse) and (- U)
* within A and IV. However, modifying a 2x2 block of D(inverse)

* looks the same as modifying the 2x2 block itself.

* 10 Mar 1989: First version.

* Systems Optimization Laboratory, Stanford University.

--

20 Preconditioners for Indefinite Systems

intrinsic abs , sqrt
integer alen, apos
logical single
parameter (zero = O.Od+O, one = 1.Od+O, two = 2.0d+O)

negl = 0
neg2 = 0
nblk = ab(iw(I))
ipos = 2
apos = 1

do 100, iblk = 1, nblk
ncols = iw(ipos)

if (ncols .At. 0) then
nrows = 1
ncols = - ncols

else
ipos : ipos + I
nrows : iw(ipos)

end if

Process the diagonals in this block.

alen : ncols

single = .true.

do 50, k = ipo8 + 1, ipos + nrows
if (single) then

alpha = a(apos)
j = iv(k)
single = j .gt. 0

if (single) then
if (alpha .lt. zero) then

* The lxi diagonal is negative.

negi = negi + 1
a(apos) = - alpha

end if
else

beta = a(apos+1)
gamma = a(apos+alen)

it (alpha * gamma .At. beta**2) then
e
* The 2x2 diagonal is indefinite.
* Find its sigensystem in the form

*

A. A preconditioner from the Bunch-Pa rlett factorization 21

* alpha beta) = c a).)(c s
* beta gamma) (s-c) e2) as-c)

-- -

tau ((gamaalpha) / (two *beta)
t - abaC tau)+ sqrt(tau**2 + one)
t -one/ t
it C tau Alt. zero)t =-t
c - one / sqrtC t**2 + one)

5~ * t c

.I alpha + beta * t

e2 = gamma - beta *t

*Change el and e2 to their absolute values
* and then multiply the three Wx matrices
* to get the modified alpha, beta and gamma.

it (el Alt. zero)then
neg2 neg2 + 1
Si -ei

end if
if (e2 .1t. zero)then

neg2 neg2 + I

e2 -e2
end if

alpha = c**2 * el + s**2 * 92

beta = c*s *(el - .2)
gama = s**2 el + c**2 *e2
a(apos)= alpha
a(apos+1)= beta
a(apos~alen) =gamma

end if
end if

alse
single = .true.

end it

apos = apos + alen
alen = alen - 1

50 continue

ipos Z ipos +ncols+ I
100 continue

* end of syprec
end

22 References

References

[Aas7l] J. 0. Aasen (1971). On the reduction of a symmetric matrix to tridiagonal form, BIT
11,233-242.

[Big75] M. C. Biggs (1975). Constrained minimization using recursive quadratic program-
ming: some alternative subproblem formulations, in L. C. W. Dixon and G. P. Szeg6
(eds.), Towards Global Optimization, North-Holland, Amsterdam, 341-349.

[BK77] J. R. Bunch and L. Kaufman (1977). Some stable methods for calculating inertia and
solving symmetric linear systems, Mathematics of Computation 31, 162-179.

[BI&82] C. Blair (1982). Some linear programs requiring many pivots, Faculty Working Paper
No. 867, College of Commerce and Business Administration, University of Illinois at
Urbana-Champaign, IL.

[BP71] J. R. Bunch and B. N. Parlett (1971). Direct methods for solving symmetric indefinite
systems of linear equations, SIAM Journal on Numerical Analysis 8, 639-655.

[Bur88] R. C. Burchett (1988). Private communication.

[DES82] R. S. Dembo, S. C. Eisenstat and T. Steihaug (1982). Inexact Newton methods,
SIAM Journal on Numerical Analysis 19, 400-408.

[DG85] 1. J. Dongarra and E. Grosse (1985). Distribution of mathematical software via elec-
tronic mail, SIGNUM Newsletter 20, 45-47.

[DGRST89] 1. S. Duff, N. I. M. Gould, J. K. Reid, J. A. Scott and K. Turner (1989). The factor-
ization of sparse symmetric indefinite matrices, CSS Report 236, Computer Science
and Systems Division, AERE Harwell, Oxford OXII ORA, England.

[DR82] I. S. Duff and J. K. Reid (1982). MA27: A set of Fortran subroutines for solving
sparse symmetric sets of linear equations, Report R-10533, Computer Science and
Systems Division, AERE Harwell, Oxford, England.

[DR83] I. S. Duff and J. K. Reid (1983). The multifrontal solution of indefinite sparse sym-
metric linear equations, ACM Transactions on Mathematical Software 9, 302-325.

[Gay85] D. M. Gay (1985). Electronic mail distribution of linear programming test problems,
Mathematical Programming Society COAL Newsletter, December 1985.

[Gay89] D. M. Gay (1989). Stopping tests that compute optimal solutions for interior-point
linear programming algorithms, Numerical Analysis Manuscript 89-11, AT&T Bell
Laboratories, Murray Hill, NJ.

[GMS89] P. E. Gill, W. Murray and M. A. Saunders (1989). A dual barrier method for linear
programming using LU preconditioning, presented at the SIAM Annual Meeting, San
Diego, CA.

[GMSTW86] P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin and M. H. Wright (1986).
On projected Newton barrier methods for linear programming and an equivalence to
Karmarkar's projective method, Mathematical Programming 36, 183-209.

(GMSW87] P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright (1987). Maintaining LU
factors of a general sparse matrix, Linear Algebra and Its Applications 88/89, 239-
270.

JGV89] G. H. Golub and C. F. Van Loan (1989). Matrix Computations, The Johns Hopkins
University Press, Baltimore, MD.

[Gou86 On the accurate determination of search directions for simple differentiable penalty
functions, IMA Journal on Numerical Analysis 6, 357-372.

[Kar87] N. K. Karmarkar (1987). Recent developments in new approaches to linear program-
ming, presented at the SIAM Conference on Optimization, Houston, TX.

[KR88J N. K. Karmarkar and K. G. Ramakrishnan (1988). Implementation and computa-
tional results of the Karmarkar algorithm for linear programming, using an iterative
method for computing projections, Extended Abstract, presented at the 13th Inter-
national Symposium on Mathematical Programming, Tokyo, Japan.

References 23

[KMY88] M. Kojima, S. Mizuno and A. Yoshise (1988). A primal-dual interior-point algorithm
for linear programming, in N. Megiddo (ed.), Progress in Mathematical Programming,
Springer-Verlag, NY, 29-48.

[LMS89] I. J. Lustig, R. E. Marsten and D. F. Shanno (1989). Computational experience
with a primal-dual interior-point method for linear programming, Report SOR 89-
17, Department of Civil Engineering and Operations Research, Princeton University,
Princeton, NJ.

[MMS89] K. A. McShane, C. L. Monma and D. F. Shanno (1989). An implementation of a
primal-dual interior point method for linear programming, ORSA Journal on Com-
puting 1, 70-83.

[Meg86] N. Megiddo (1986). Pathways to the optimal set in linear programming, in N. Megiddo
(ed.), Progress in Mathematical Programming, Springer-Verlag, New York, 131-158.

[Meh89a] S. Mehrotra (1989). Implementations of affine scaling methods: approximate solu-
tions of systems of linear equations using preconditioned conjugate-gradient meth-
ods, Report 89-04, Department of Industrial Engineering and Management Sciences,
Northwestern University, Evanston, IL.

(Meh89b] S. Mehrotra (1989). On finding a vertex solution using interior-point methods, Report
89-22, Department of Industrial Engineering and Management Sciences, Northwest-
ern University, Evanston, IL.

[Meh9O] S. Mehrotra (1990). On the implementation of a primal-dual interior-point method,
Report 90-03, Department of Industrial Engineering and Management Sciences,
Northwestern University, Evanston, IL.

[MLB87] C. Moler, J. Little and S. Bangert (1987). PRO-MATLAB User's Guide, The Math-
Works, Inc., Sherborn, MA.

[Mur69] W. Murray (1969). Constrained Optimization, Ph.D. Thesis, Computer Science De-
partment, University of London, London, England.

[PS75] C. C. Paige and M. A. Saunders (1975). Solution of sparse indefinite systems of linear
equations, SIAM Journal on Numerical Analysis 12, 4, 617-629.

[Pon9O] D. B. Poncele6n (1990). Barrier Methods for Large-Scale Quadratic Programming,
Ph.D. Thesis, Computer Science Department, Stanford University, Stanford, CA.

[Rut66] H. Rutishauser (1966). The Jacobi method for real symmetric matrices, Nuvuc, tu.'h
Mathematik 9, 1-10.

[Sau791 M. A. Saunders (1979). Fortran code: a modification of SYMMLQ to allow use of a
positive-definite preconditioner. Included in misc chapter of netlib, September 1985.

[SW78] D. Szyld and 0. Widlund (1978). Fortran code: a modification of SYMMLQ to allow
use of a positive-definite preconditioner. Private c3mmunication.

ITZ891 R. A. Tapia and Y. Zhang (1989). A fast optimal basis identification technique for
interior point linear programming methods, Report TR89-1, Department of Mathe-
matical Sciences, Rice University, Houston, TX.

[Tur87 K. Turner (1987). Computational experience with the projective Karmarkar algo-
rithm, presented at ORSA/TIMS Joint National Meeting, St. Louis, MO.

[Tur90] K. Turner (1990). Computing projections for the Karmarkar algorithm, Re.ort 49,
Department of Mathematics and Statistics, Utah State University, UT.

UNCLASSIFIED
SECURITY CLASSIFICATION OF T041S PAGE E116 Ws &" E-ee

REPORT DOCUMENTATION PAGE READ 0ESTRUCTIONS
IREF. REPOPERTN rUMOE

1. RPORTHumeillGOVT ACCSSSN O. L 0CIPIT'S CAT ALOG Hum11ER

SQL 90-8 T______ __________

4. TITLE (40d SUM11bd1 yp FREOT EIO eEJI

Preconditioners for Indefinite Systems Technical Report
Arising in Optimization a. PERFORMING Oita. REPORT NummeR

7. AUTNOR(q) 6. CONTRACT Olt GRANT wumOes)

Philip E. Gill, Walter Murray,
Dulce B. Ponceledn and Michael A. Saunders N00014-90-J-1242

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. EMA LEMEI ROET TASK
Department of Operations Research - SOL A WORK 2T-UPMERS'

Stanford University 1111MA
Stanford, CA 94305-4022_______________

11. CONTROLLING OFFICE NAME AND ADDRESS Sit. REPORT DATE
Office of Naval Research - Dept. of the Navy June 1990
800 N. Quincy Street IS. NUMBER OF PAGES
Arlington, VA 22217 23 Cpp..o S.u~a

1S. SCuRITY LS o M tA

UNCLASS I FIED
I". 09CkAIICATION/ DOWNGRADING

16. DISTRIBUTION STATEMENT (of W~e Deapat)

This document has been approved for public release and sale;
its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of A* a.bbot mmrin 21" Dle". it *Ih.wo h* Repeet)

19. SUPPLEMENTARY NOTES

It. KEMY WORDS (Candeue am veee aid. of nereemw Md #.5ef or p MAme)

indefinite systems; preconditioners; linear programming;
nonlinear programming; numerical optimization; barrier methods;
interior-point methods.

20. ABSTRACT (CmihU a reveresaide UD .. e..p ad OdWIeti 6F Week aMErW)

(please see reverse side)

DO i~ Pi i EmyT173 90TON OF I NOV 68 15 O110OL9TE

89CUOUTY CLAINUPCATON OF THIS PAGE (Shea t sf

I2CURITY CLASSIFICATION OF THiS PAGIEIhan Data EntereO

SOL 90-8: Preconditioners for Indefinite Systems Arising in Optimization, Philip E. Gill,
Walter Murray, Dulce B. Poncele6n and Michael A. Saunders (June 1990, 23 pp.).

We discuss the solution of sparse linear equations Ky = z, where K is symmetric and indefinite.
Since exact solutions are not always required, direct and iterative methods are both of interest.

An important direct method is the Bunch-Parlett factorization K - UTDU, where U is triangular
and D is block-diagonal. A sparse implementation exists in the form of the Harwell code MA27. An
appropriate iterative method is the conjugate-gradient-like algorithm SYMMLQ, which solves indefinte
systems with the aid of a positive-definite preconditioner.

For any indefinite matrix K, we show that the UTDU factorization can be modified at nominal
cost to provide an "exact" preconditioner for SYMMLQ. We give code for overwriting the block-diagonal
matrix D produced by MA27.

We then study the KKT systems arising in barrier methods for linear and nonlinear programming,
and derive preconditioners for use with SYMMLQ.

For nonlinear programs we suggest a preconditioner based on the "smaller" KKT system associated
with variables that are not near a bound. For linear programs we propose several preconditioners based
on a square nonsingular matrix B that is analogous to the basis matrix in the simplex method. The aim
is to facilitate solution of full KKT systems rather than equations of the form AD 2 Ar = r when the
latter become excessively ill-conditioned.

SgCUIlTY CLASUFICATIOO * Yw@,PA@CM*Io,, EterOd

